Discriminating Languages in a Probabilistic Latent Subspace
نویسندگان
چکیده
We explore a method to boost discriminative capabilities of Probabilistic Linear Discriminant Analysis (PLDA) model without losing its generative advantages. To this end, our focus is in a low-dimensional PLDA latent subspace. We optimize the model with respect to MMI (Maximum Mutual Information) and our own objective functions, which is an approximation to the detection cost function. We evaluate the performance on NIST Language Recognition Evaluation 2015. Our model trains faster and performs more accurately in comparison to both generative PLDA and discriminative LDA baselines with 12% and 4% relative improvement in the average detection cost, respectively. The proposed method is applicable for a broad range of closed-set tasks.
منابع مشابه
Monocular 3D Human Motion Tracking Using Dynamic Probabilistic Latent Semantic Analysis
We propose a new statistical approach to human motion modeling and tracking that utilizes probabilistic latent semantic (PLSA) models to describe the mapping of image features to 3D human pose estimates. PLSA has been successfully used to model the co-occurrence of dyadic data on problems such as image annotation where image features are mapped to word categories via latent variable semantics. ...
متن کاملCross-Lingual Latent Topic Extraction
Probabilistic latent topic models have recently enjoyed much success in extracting and analyzing latent topics in text in an unsupervised way. One common deficiency of existing topic models, though, is that they would not work well for extracting cross-lingual latent topics simply because words in different languages generally do not co-occur with each other. In this paper, we propose a way to ...
متن کاملPLSA-based topic detection in meetings for adaptation of lexicon and language model
A topic detection approach based on a probabilistic framework is proposed to realize topic adaptation of speech recognition systems for long speech archives such as meetings. Since topics in such speech are not clearly defined unlike news stories, we adopt a probabilistic representation of topics based on probabilistic latent semantic analysis (PLSA). A topical sub-space is constructed by PLSA,...
متن کاملA Spectral Approach for Probabilistic Grammatical Inference on Trees
We focus on the estimation of a probability distribution over a set of trees. We consider here the class of distributions computed by weighted automata a strict generalization of probabilistic tree automata. This class of distributions (called rational distributions, or rational stochastic tree languages RSTL) has an algebraic characterization: All the residuals (conditional) of such distributi...
متن کاملSelect-and-Sample for Spike-and-Slab Sparse Coding
Probabilistic inference serves as a popular model for neural processing. It is still unclear, however, how approximate probabilistic inference can be accurate and scalable to very high-dimensional continuous latent spaces. Especially as typical posteriors for sensory data can be expected to exhibit complex latent dependencies including multiple modes. Here, we study an approach that can efficie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016